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Abstract-An analytical approach based on the theory of stochastic processes is developed for the
stochastic initial failure analysis and reliability predictions of thin-walled laminated composite
structures. The probability of initial failure is calculated using theory of rare passages of the random
strain vector field out of the prescribed region of allowable states. The region is limited by the
ultimate strain surfaces adopted for each individual layer in the laminate. The surfaces, in their
turn, are defined in terms of the scatters in the ultimate strains for the composite layer. Reliability
function of a composite layer having random elastic characteristics and loaded with random in
plane tractions is determined through the probability of its initial failure. The reliability function of
the laminated composite structure is then calculated through the failure probabilities of individual
layers, using the weakest link model. The proposed approach allows one to solve diverse stochastic
problems and requires substantially less computational expenses than Monte Carlo simulation
technique. The approach may be invaluable for a quick evaluation of various competitive design
projects when considering laminated composite structures under the reliability constraint. Appli
cations of the developed approach are illustrated on the examples of reliability predictions of
laminated composite cylindrical shells under the effect of random internal pressure and laminated
composite plates under random biaxial loading. Numerical results reveal specific probabilistic
phenomena related to the effects of ply lay-up, scatters in mechanical and strength characteristics and
random loading histories. Results obtained from the developed analytical approach are compared to
those calculated with Monte Carlo simulation technique. © 1997 Elsevier Science Ltd

I. INTRODUCTION

Deformation and failure processes in composite structural parts occurring during their in
service failure are, essentially, of a stochastic nature. The processes depend on a number of
random factors:

• manufacturing imperfections, for example scatters of stiffness and strength characteristics
of a composite lamina, imperfect bonding between the layers, various geometrical irregu
larities;

• uncertainties introduced through the assembly processes, for example variability of the
interaction conditions between the parts in bolted, adhesive and other types of joints;

• inevitably random nature of the in-service mechanical loads and environmental
conditions.

An attempt to realistically address the aforementioned as well as other possible sto
chastic effects in the analysis and design of real-life composite structures would lead to an
extremely complex probabilistic/stochastic problem. There are several known options to
approach the problem. One of them, which is currently dominating, is Monte Carlo
simulation technique, This approach is theoretically simple, does not require substantial
analytical work, is able to address diverse stochastic problems, On the other side, this
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usually requires a huge amount of computer time and memory, especially when finite
element methods or other numerical techniques are used for stress calculations. Indeed,
when considering highly reliable structures, it is necessary to run hundreds (possibly, even
thousands) computational variants ("realizations") in order to predict a single numerical
value-reliability of the structure under specified loading conditions.

Another option is to develop analytical probabilistic models. Following this approach,
one would be able to establish explicit relations between the random input data and the
output reliability value. This approach is theoretically more complex, requires application
of the advanced concepts of the theory of probability, stochastic processes and reliability.
However, in return, this provides powerful tools for the quick reliability evaluation con
sidering many possible loading conditions, material properties and other design parameters.
It should be emphasized that both aforementioned approaches, while very distinct, can be
combined together, depending on the specific needs of the designer.

Generally, the goal of a stochastic structural analysis can be formulated as the
"behavior" prediction of the structure which is exposed to some random in-service con
ditions and possesses intrinsic stochastic properties itself. The behavior can be formalized
in terms of the region of allowable states which is defined in a multi-dimensional space of
displacements strains/stresses. Thus, only those values of these characteristics that belong
to the interior of the region, are permitted during lifetime of the structure. Any violation
of this condition is commonly treated as partial "refusal" of the structure, Bolotin (1982).
Mathematically, this problem can be formulated in terms of the reliability function which
is defined as probability of the event that the structure works without any refusals. Conse
quently, any refusal lowers the reliability value. The condition identifying the occurrence
of any single refusal can be formulated using various criteria. The maximum allowable
point-wise deflection is a reasonable one in the problems of buckling, see Bogdanovich and
Yushanov (1981). Probabilistic analogues of the maximum stress/maximum strain criteria
represent more complex point-wise ultimate condition, see Bogdanovich and Yushanov
(1983), Yushanov (1985). Depending on the criterion, each refusal can be viewed as the
cause of partial or total exhaustion of the load-carrying capacity of the structure.

The theory characterizing progressive "damage build-up" in composite materials has
been developed by Bolotin (1976), (1981). Each damage occurrence is treated as partial
refusal which is random event. From this point, progressive damage in composite material
or structure can be characterized as stochastic vector process. In the specific case of
laminated composite structures it is natural, following the philosophy of deterministic
mechanics of laminated structures, to assume that each layer, viewed as the basic structural
entity, may experience its own set of refusals. If the very first refusal occurring in some
layer is treated as the end of service life of the structure, then the stochastic analogue of
the deterministic first-ply failure analysis is obtained. If numerous "partial" refusals are
permitted up to the point when some "ultimate" refusal occurs, then the stochastic analogue
of the deterministic ply-by-ply failure analysis is obtained. The examples of "initial" sto
chastic failure analysis of laminated composite cylindrical shells can be found in Protasov et
al. (1978), where Monte Carlo modeling has been used, in Bogdanovich and Yushanov
(1983), (1986), (1994), Yushanov (l985a), where analytical modeling using theory of
stochastic processes has been developed. Various approaches for "progressive", ply-by-ply
stochastic failure analysis were presented in Protasov et al. (1980), (1983) using the Monte
Carlo method and in Yushanov (I 985b), Bogdanovich and Yushanov (1987) using theory
of stochastic vector processes. Another original analytical approach for progressive failure
analysis of laminated composite plates, based on the idea of gradual reduction of stiffness
distribution functions of the layer, has been developed in Dzenis et al. (1992), (1993),
(1994). This utilizes theory of stochastic vector processes as well.

Among a few other works devoted to probabilistic/stochastic analysis of laminated
composite plates and shells the following ones should be mentioned. The reliability of
laminated composite plates subjected to in-plane loads has been studied in Cassenti (1984),
Nakagiri et al. (1987), Tani et al. (1988), Cederbaum et al. (1990), Thomas and Wetherhold
(1991), Corvi and Vangi (1992). Specifically, the failure criterion of Hashin has been used
as the "performance function" in Cederbaum et al. (1990). Due to the reason that this
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performance function is nonlinear with respect to the ply stresses, the Hasofer-Lind method
was used for its linearization in the vicinity of the design point. The distance from the stress
space origin to the ultimate surface is then treated as the reliability index.

Probabilistic geometrically nonlinear finite element analyses were recently developed
by Engelstad and Reddy (1992) for thin-walled composite shells and by Kam et al. (1993)
for thin-walled composite plates. In the former work, the first-order second-moment
approach was used to calculate random fields. A reliability analysis has been performed
using the Tsai-Wu first ply failure criterion. In the latter work, random strength properties
and random loads were accounted for. The ultimate surfaces were obtained by performing
a series of first ply failure analyses following different paths in the multiaxial load space.
The maximum work, maximum strain and maximum stress-fIrst-ply failure criteria were
utilized. The first of them is nonlinear, so the Hasofer-Lind linearization method has been
applied, similarly to the earlier work of Cederbaum et al. (1990).

A structural synthesis problem has been discussed in Thanedar and Chamis (1995) in
the context of integrating the reliability-based strength requirements and optimization
techniques for the tailoring process of composite structures. As pointed out in this work,
"almost all of the existing structural tailoring software is based on a deterministic approach.
Thus, it is not possible to directly account for the inherent composite properties scatter in
the currently available tailoring software." This conclusion emphasizes the necessity of
developing advanced probabilistic approaches which would address all random factors
essential for laminated composite structures and provide theoretical background for econ
omical and diverse design software.

The objective of this work is to develop a general approach for the reliability analysis
of thin laminated composite plates and shells, using theory of stochastic vector processes.
The approach can be viewed as a probabilistic extension of classical theory of laminated
plates and shells and its application for the first ply failure prediction based on the pro
babilistic analogue of the maximum strain/stress criteria. The analysis takes into account
scatters in elastic and strength ply properties along with the random quasistatic loading
history.

2. PROBABILISTIC MESOVOLUME ANALYSIS

Any composite can be treated as a multi-element system consisting of some "fun
damental entities". Depending on the specific needs of the analysis, a single fiber element
surrounded by a matrix material (a "microvolume") or a monolayer consisting of a great
amount of microvolumes (a "mesovolume") or a larger part of the whole structure (a
"macrovolume") can be considered as the fundamental entity. The principal assumption
adopted here is that the mesovolume should contain a sufficiently large number of micro
volumes and can, therefore, be viewed as a structurally homogeneous body. In each specific
case, the mesovolume has to be chosen as to satisfy the following requirements:

(i) "structural" homogeneity of the material at the mesovolume level, and
(ii) "stochastic" homogeneity of displacements, strains, and stresses inside the meso

volume.

In the simplest case, when all of the layers in the laminated structure are under uniform
strains and stresses, each of them can be treated as a single mesovolume. In the case of
nonuniform strain/stress fields inside the structure, the size of the mesovolume has to be
determined by the characteristic scale of the variation of stress and strain fields. It has to
be pointed out that the conditions (i) and (ii) may be controversial, and it is easy to imagine
situations where, under sharply varying stress-strain states, no entity satisfying both the
conditions (i) and (ii) can be found.

Assuming that decomposition of the structure into a number of mesovolumes has
been established, the reliability function can be defined as follows. Considering some
mesovolume, the "performance" vector q(r, t) that characterizes different "states" of the
mesovolume during the loading history is introduced. The components of this vector can
be, specifically, the components of the displacement vector, stress or strain tensors. Thus,
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the performance vector characterizes stochastically homogeneous random field created in
the mesovolume during the loading history. Further, the region of allowable states n should
be defined in the respective displacement/strain/stress space. Like in the deterministic
mechanics, this is performed by prescribing some "ultimate surface" r which is math
ematically defined in terms of the selected phenomenological point-wise failure criterion.
The only difference with the traditional failure analysis is that the surface r is now of a
stochastic nature. This means that the ultimate displacements, strains or stresses are random
values. For example, in the case of stochastic maximum stress criterion, the region n is a
multi-dimensional parallelepiped with the boundary r defined by several random values.
In the case of tensor-polynomial criteria, the corresponding regions n are ellipsoids defined
by respective random values, etc.

Thus, for an arbitrary mesovolume, the first task is to calculate probability of the event
that the performance vector escapes from the region ofallowable states n. If the calculations
show that such an event had occurred, a partial or total refusal of the mesovolume is stated,
and this should be accounted in the further stochastic deformation and failure processes.
The mesovolume reliability function, Rs , is then determined as probability that no one
refusal had occurred in this mesovolume during the time interval under consideration.
Theory of passages of random functions or processes out of the region of allowable states
can be used for calculating this probability, Bolotin (1982).

After the reliability function of each individual mesovolume has been determined, it
remains to define reliability of the multi-element system (in our case, the assemblage of N
mesovolumes), using their individual reliability functions R b R2, ••• , RN • In the simplest
approach, assuming that failures of the mesovolumes are stochastically independent events,
the following two utmost reliability values can be obtained. First, considering that laminated
structure is an assemblage of the mesovolumes linked in series, the reliability function is
determined by the formula

N

R' = nRs •
s= 1

In the case of parallel connection, it is defined as

N

R" = 1- n(l-Rs )'

s= 1

(1)

(2)

The reliability value intermediate between (1) and (2) can be obtained using some
parameters that characterize accumulation of the "partial refusals" (various definitions of
the "defectiveness levels" or "damageability parameters" were used in Bolotin (1976),
Protasov et al. (1980), Yushanov (1985b), Bogdanovich and Yushanov (1987)). The dam
ageability parameter can be introduced, for example, as OJ = n/N, where n is the number of
refused mesovolumes. In general, the reliability ofeach remaining mesovolume is influenced
by all of the previous refusals in the same mesovolume or in other mesovolumes which
belong to the same structure. To take account of the whole "refusal history", it is necessary
to establish a specific model of stochastic stiffness reductions, respective stress redis
tributions, etc. In other words, it is necessary to develop a complex stochastic model of
progressive damage in a multi-element structure. Various approaches to this problem have
been proposed in Protasov et al. (1980), Yushanov (1985b), Bogdanovich and Yushanov
(1987), Dzenis et al. (1992), (1993), (1994). However, in this initial study our objective is
not to dwell into this very complex problem, but to calculate reliability of each individual
mesovolume in the laminated structure and then obtain reliability of the multi-element
structure using the series connection model (1).

Thus, the state of the sth mesovolume is characterized by the performance vector
q(s)(t) = {q\S)(t), ... , q~)(t)} which is a random function of time but is independent of the
spatial coordinates. Let the region of allowable states be specified as follows:
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(3)

If the performance vector is specified in the strain space, then its components are the
components of the strain tensor e(s)(t). If the performance vector is specified in the stress
space, then its components are the components of the stress tensor a(s)(t). The region of
allowable states Q is limited by the ultimate surface r which is specified in the space of
ultimate strains or stresses by a set of parameters qj±, which are random values with the
mean values <qj±) and the standard deviations aq,~. Parameters aqi~ are determined by the
scatter of ultimate stresses/strains of the material.

Each passage of the performance vector q(s)(t) out of the region Q is a refusal of the
layer. The probability of the event that the vector q(s)(t) does not leave the region Q within
the preset time interval 0 ~ r ~ t defines the reliability of the mesovolume :

(4)

In the following, the composite structures under consideration are assumed to be systems
with high reliability index and, accordingly, the probability (4) is expressed in terms of the
expected rate, v[q(s)(t)], of the crossings of the ultimate surface by the vector q(s)(t) per unit
time:

Rs(t) = exp {-Lv[q(S) (r)] dr}. (5)

For highly reliable systems, the expected rate of crossings, v[q(s)(t)], can be calculated as
the sum of the expected rates of the crossings per unit time by each component of the
performance vector:

k

v[q<s)(t)] = L {v[q}sJ(t); q-] +v[q~\)(t);q+]}.
i=1

(6)

In eqn (6), V(ql') ,q+) is the expected rate of the q+ level-up-crossing for component ql')
and v(q}s) ;q-) is the expected rate of the q- level-down-crossing for component q}S). The
rates are expressed in terms of the differential distribution, I(q}') , ti}s», of the ordinates of
respective random function and its derivative, Sveshnikov (1968) :

If the performance vector is Gaussian process, then/(q~s), q}S» is the two-dimensional normal
distribution, and integration in eqn (7) can be carried out to obtain a close form solution
(Bolotin, 1982). If the centered performance vector is a stationary random process, then
the two-dimensional normal distribution reduces to the product of the one-dimensional
distributions,f(q~s),q}s» = 11 (q~s)/2 (q}S», and eqn (7) after performing the integration yields

x {exp [<q;(t»J±~11l (± <qj(t»)} (8)
2aJ,Ct) aq,Ct)

where
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I I" (X
2
)<I>(u) = 2n -oc exp - ~ dx

is the Laplace function. For the brevity of the notations, the superscript (s) of the per
formance vector is dropped here and henceforth. The following notations are further
introduced in (8) : (J:j(t) = Kqjqj(t, t) and

are the variances of the random function qi(t) and its derivative, respectively;
(J:,± = <(qi± - <qi± ) ) 2) is the variance of the u~imate parameters; Kqjqj (t j, t2) is the (i,j) th
element of the second rank covariance tensor Kq(tJ, t2) :

sym

(9)

Here, symbol <. .. ) stands for mathematical expectation, symbol ® stands for outer tensor
multiplication, and the top symbol "0" denotes the centered random variable: x = x- <x).

In eqn (8), the group of terms in the curly brackets accounts for the possible time
variation of the mean value of the performance vector. If <q;(t) = 0, then the sum of the
terms in curly brackets is equal to unity. and eqn (8) reduces to the rate of a random level
crossing by a stationary process. The inner "static" stochastic properties of the system
(such as scatter in material elastic properties) are taken into account by the term (Jqj' while
the "nonstationary" stochastic properties (as in the case of dynamic random loading) are
accounted for by the term (Jtj;, Ultimate stochastic properties (specifically, the scatter in
strength characteristics) are accounted for by the terms (Jq±.

Thus, in order to calculate a mesovolume reliability function, it is necessary to calculate
first the covariance tensors of the performance vector and its derivatives.

3. STIFFNESS COVARIANCE ANALYSIS

When using classical theory of multidirectional laminates, the constitutive relations
are of the form

(10)

where Nand M are the vectors of stress resultants and moments, e and k are the vectors of
the strain components on the reference plane (mid-plane) and curvature of the laminate, A
is the matrix of extensional stiffnesses, B is the matrix of coupling stiffnesses, and fi is the
matrix of bending or flexural laminate stiffnesses. The laminate stiffness matrices A, ii, and
fi are expressed in terms of the stiffness matrices of the individual layers, Q'(5), through the
common equations, Jones (1975). Further, under the assumption of a plane stress state,
Q'(5) are expressed in terms of the reduced stiffness matrix, Q, and the ply lay-up angles qJs

by applying rotation through angle qJ, about the normal to the laminate mid-plane. Finally,
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elements ofQ are expressed, for each individual layer, in terms of the engineering constants
of the composite material.

Due to assumed scatter in elastic properties of the layer, elements of Q are random
values. Consequently, all elements of the laminate stiffness matrices, A, ii, and 0, are
random values. Hence, the constitutive relations (10) are stochastic equations. Furthermore,
the performance vector q(s)(t) depends on the laminate stiffnesses. Thus, in order to calculate
the covariance tensor (9) of the performance vector, the covariance tensors of the laminate
stiffnesses must be first obtained. Our current aim is to express the covariance tensors of
the laminate stiffnesses in terms of prescribed mean values and standard deviations of the
lamina engineering constants.

Let us introduce random vector X whose components are the minimum set of inde
pendent engineering constants of a lamina. Also, introduce the following random stiffness
vectors: Q, Q', A, B, and D. Components of these vectors are rearranged non-zero distinct
elements of the stiffness matrices Q, Q', A, ii, and 0, respectively. For example, in the case
of an orthotropic lamina there are, considering a plane stress case, four independent
engineering constants; accordingly, X = {£\'I, £~<i, G\si, v\Si}. Thus, the vector of mem
brane stiffnesses of the laminate is A = {A 1h A 12, A 16, An, A 26, A 66 }.

The reduced stiffnesses depend on the ply elastic constants in a rather complex,
nonlinear manner. Hence, calculation of the stiffness covariances cannot be performed
directly. To overcome this difficulty, we will apply the linearization procedure to the
functions of random variables. In the procedure, the vector of reduced stiffnesses is
expanded into the power series in the vicinity of the mean values of its arguments:

A 8QI .'l = Q-<Q) = 8X ·(X-<X»+··· ~(QVx)lx~<x)oX
x~<x)

(11)

where higher-than-linear terms have been neglected. Here, symbol "." stands for scalar
product (inner tensor product), and QVx is the second rank tensor with its (i,j)th component
equal to 8Q;/8~. Using (II) and definition of the covariance function and the identity
(QVx) 0 X == X' VxQ, one obtains the following covariance tensor of the reduced ply stiff
nesses:

<Q ® Q) = QVxlx~<x)'<X ® X) o(VxQ)lx~<x) (12)

where VxQ is second rank tensor with its (i,j)th component being equal to 8Q)8X;. Since
the ply elastic constants are independent, all components of the second rank tensor <X ® X)
are zero except those which belong to the main diagonal. The diagonal components are
equal to the corresponding variances of the ply elastic constants. Equation (12) is then
written in the following form

(13)

where 0'1, = <xl> is the variance of the engineering constant XI' Vector Q'ls) is expressed
in terms of the vector Q and the ply lay-up angle CfJs:

Q'IS) = b(s) • Q (14)

where b(s) is the standard transformation matrix for rotation through angle CfJs about the
normal to the laminate mid-surface. With the use of (14), the covariance tensor of reduced
ply stiffnesses (related to the "global" coordinate system of the structure) is calculated as
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«)'(S) ® Q'(s) = 6(s), <Q ® Q) ,(6(,)T (15)

where superscript "T' denotes transposition operation.
Using standard equations which express the laminate stiffnesses in terms of the reduced

ply stiffness Q/(S) and assuming that the reduced stiffnesses of individual plies are sto
chastically uncorrelated random functions, we obtain the following expressions of the
covariance tensors of the laminate stiffnesses

N

<A ® A) = L (<5, - <5,_ d<Q/(s) ® Q/(')
s= 1

(16)

and cross-covariance tensors of the laminate stiffnesses

(17)

where <5, is the distance from the bottom laminate surface to the top surface of the sth layer.
Equations (16) and (17) along with (12) and (15) provide all the necessary relations
expressing the covariance tensors of the laminate in terms of standard deviations of the
elastic constants of its layers.

4. THE IN-PLANE STRAIN/STRESS COVARIANCE ANALYSIS

The above theory is applicable for any lamination and any deformation mode (stretch
ing, shearing, bending, torsion) of a thin-walled laminated structural element which can be
accurately solved in the framework of classical deterministic theory of laminated plates and
shells. Now we will further proceed with this analytical development considering symmetric
laminations (in this case all elements of B matrix are zero) and the in-plane loading
conditions, when there are only membrane tractions acting on the structural element (all
components of the M vector are zero). Accordingly, the constitutive equations (10) are
uncoupled, and the strain vector is written as

e = a'N (18)

where a = A~ I. The strains 6(s) in the principal axes of symmetry of the sth layer and the
strains e in the global axis of the structure are related through the equation

6(5) = g(s) , e (19)

where g(') is the transformation matrix of the rotation through angle <fJs about the axis
normal to the laminate mid-surface. The stresses expressed in the principal axes of symmetry
of the sth layer are then calculated as
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(20)

Our next aim is to derive expressions for the covariance tensors of the strains e(s) and
stresses (J(s) in terms of the mean values and covariance tensors of the laminate stiffnesses
and the load vector. The covariance tensor of the laminate compliances, <a ® a), is first
needed for this purpose. To simplify the forthcoming calculations, we introduce the laminate
compliance vector, a, which contains only non-zero elements of the compliance tensor a.
Then we shall calculate covariance tensor, <a (8) a), for the vector a. After that, all elements
of the fourth order tensor <a ® a) can be derived by rearranging elements of the second
order tensor <a (8) a).

Each element of the compliance vector is a nonlinear function of the laminate mem
brane stiffnesses A. To obtain the covariance functions of the laminate compliances, we
again use the linearization procedure:

(21)

where aVA is the second order tensor with its (i,})th component equal to 8aj8Ai . Making
use of this expansion, one obtains the following covariance tensor of the compliance vector:

(22)

where the (i,})th component of the tensor VAa is equal to 8aj8A j •

Next we derive the strain covariance tensor. As it follows from (I 8), the centered strain
vector can be written as

e= e-<e) = a·N-<a)·<N).

By using (21), one obtains the following average tensor product of strain vectors:

(23)

(24)

In derivation of (24), small terms of the fourth order such as ~. N® ~. N, for example,
have been neglected. Using the tensor identity a' N= N' aT and taking into account that a
is a symmetric tensor, (24) transforms into

(25)

where <N ® N) is the covariance tensor of the in-plane tractions, which is defined in terms
of the random load characteristics. Using eqns (19) and (20), one obtains the following
covariance matrices of the strains and stresses in the sth layer:

<o-(s) ® o-(s) = Q(s) • <e(s) ® 8(s) ) • Q(s) .

(26)

(27)

Equations (26) and (27) together with (25) and (22) provide all the necessary covariance
relationships for the mesovolume reliability calculations.
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5. CHARACTERIZATION OF THE RANDOM LOADS

Let the load vector N(t) be a Gaussian stochastic process represented in the form of a
stochastically orthogonal spectral expansion

N(t) = (N(t)+ f~oo W(w)e
iWI dw

where the spectral vector W(w) satisfies the conditions of stochastic orthogonality

(W*(w) ® W(w') = SN(W) b(w-w').

(28)

(29)

Here, superscript "*,, denotes complex conjugate, b(w) is Dirac delta function, and SN(W)
is the tensor of spectral densities of the vector N(t). Tensor SN(W) is related to the covariance
tensor KN(r) through the following relationships:

(30)

which constitutes the Wiener-Khintchine transform pairs. Although the covariance tensor
KN(r) is invariant regarding the time reference point, the random process N(t) specified by
the expansion (28) is, generally, not a stationary one since its mathematical expectation
(N(t) may be an arbitrary function of time. Evidently, centered load vector
N(t) = N(t) - (N(t) is a stationary stochastic process.

According to eqn (8), in order to calculate the rate of crossings of the prescribed
positive or negative ultimate level, one has to obtain the covariance matrix of the derivatives
of the performance vector. By performing double differentiation in eqn (25) with respect
to time variable, and taking into account relations (28) and (29), one obtains the following
covariance tensor of the strain derivatives:

(31)

where N(t) and KN(t) are first and second time derivatives of functions N(t) and KN(t),
respectively. By making use of the (31), (19) and (20), the covariance tensors of the strain
and stress derivatives related to the material axes can be easily evaluated.

7. NUMERICAL EXAMPLES

7.1. Laminated cylindrical shells under internal pressure
In the framework of the general method developed, we further solve several specific

problems to illustrate the effects of scatters in elastic and strength characteristics of the
material and random loading histories on the reliability function. First example considers
laminated circular cylindrical shell made of identical Kevlar fiber reinforced polymeric
layers. Geometrical parameters of the shell are: h = 5 oW- 3m, Rolh = 200, LIRo = 2, where
h is the thickness, L is the length, and Ro is the radius of the mid-surface. The data of
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Table I. Elastic and strength characteristics of the unidirectional Kevlarjepoxy
composite

675

Material
characteristict

E,J,GPa
E22 , GPa
G jb GPa

Mean value

74.9
4.65
1.8777
0.35

-0.478'10- 2

1.71' 10- 2

-1.41' 10- 2

0.283' 10- 2

±2.56·1O- 2

Standard deviation,
%

Elastic constants
2.97
3.44
1.76
8.86

Ultimate strains
5.2

11.7
7.8
5.6

30.8

t Note: subscript "I" corresponds to the fiber direction, "2" to the transverse
direction.

Table I, taken from Clements and Chiao (1977), will be used as input data in our
calculations of the random stiffnesses, compliances and strength characteristics of the
monolayer.

Consider a circular cylindrical shell under the effect of stochastic axisymmetric internal
pressure. In this case, each layer in the shell can be treated as the mesovolume, and its
performance is characterized by the random process depending on time but not on space
coordinates. The applied random internal pressure p(t) is defined by its mean (P(t)>and
random fluctuations around this mean. The fluctuations are defined by the following
covariance function:

(32)

which corresponds to the Gaussian distribution of the spectral density. The parameters (Jp

and To correspond to the standard deviation and correlation time of the random fluctuations.
According to the membrane shell theory, the traction vector for cylindrical shell having

end closures and loaded with internal pressurep(t) is defined as N (t) = {p(t)Ro/2,p(t)Ro, O}.
Thus, the covariance tensor of the traction vector and the covariance tensor of its derivative
are of the form

where

(33)

[

1/4

n = 1~2
112 0]
~ ~.

(34)

The performance vector is then specified in three-dimensional strain space in such a
way as its components are the strain tensor components referred to the principal axes of
the sth layer:

(35)

The rate of "decay" of the shell reliability during some specific random load history is
controlled by the following stochastic factors:
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Time
Fig. I. Illustration of the random loading history of a cylindrical shell.

(i) random time-dependence of the applied internal pressure,
(ii) scatter in elastic constants of the monolayer, and

(iii) scatter in ultimate strains of the monolayer.

We will further examine the effect of all these factors. All of the shells under con
sideration were composed of four symmetrically placed identical Kevlarjepoxy layers, but
with varying ply lay-ups. Thus, the total shell thickness is the same in all of the examples.
Input parameters of the mean internal pressure (see Fig. 1) are: T] = lOs, T2 = 20s,
T3 = 30s, Po = 0.7P:, where P: is the value of the "critical" deterministic internal pressure.
This critical value, specific for each particular lamination, is defined from the solution of
the corresponding deterministic first-ply failure problem. The first-ply failure is calculated
for the laminated shells under consideration using mean values of the material properties
listed in Table 1.

Numerical results shown in Figs 2 and 3 correspond to [0°, 900 L laminated shell. The
calculated value of P: is 0.578 MPa. These results illustrate that the reliability decreases
with the increase of the standard deviation of the internal pressure and the decrease of the
correlation time. The dependence of the reliability function on the correlation time To can
be easily explained. The correlation time characterizes attenuation of the correlation
between the stochastic process parameters at different time instants. When the correlation
time is decreased, the frequency of fluctuations of the stochastic process is increased (with
their average amplitude being the same). Consequently, the number of "attempts" to cross
the prescribed ultimate level in some time interval is increased. Obviously, under the
condition that all other input parameters are fixed, but the number of attempts is increased,
the result is the lower value of the reliability. In the other words, the higher is the frequency
of random fluctuations of the random load history, the more significantly these fluctuations
affect the reliability function.

The effect of the scatter in elastic constants and ultimate strains on the reliability
function is shown in Fig. 4. The results correspond to ply lay-up [0°, 900 L. The correlation
time To is 0.01 s in all cases. Standard deviation of the applied pressure is 10% of the
maximum level, and the maximum level is 70% of the critical deterministic internal pressure
value for this specific shell. As seen from Fig. 4, the fluctuations of the applied load and
the scatter in elastic constants substantially decrease the reliability. However, the effect of
the scatter in ultimate strains is even more pronounced. If both the scatters are taken into
account simultaneously (curve 3), the most rapid drop of the reliability is obtained.
Certainly, the quantitative effect of the examined random factors on the reliability function
depends on the specific ply lay-up. Many additional calculations performed allowed us to
conclude that the most severe effect was always due to the scatter in ultimate strains, not
due to the scatter in elastic properties. The conclusion is valid for the loading case under
consideration and the composite material treated here regardless of the specific ply lay-ups.
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Fig. 3. Reliability functions at different values of the random load correlation time '0: 0.01 s (curve
1),0.1 s (curve 2), 0.5 s (curve 3). Standard deviation of the load value is 10% of the maximum

load level Po = 0.7P:.

This result is, probably, a consequence of the higher variance of the ultimate strains than
that of the elastic characteristics for the considered composite material.

Effect of the ply lay-up on the reliability function is illustrated in Fig. 5. The following
ply lay-ups have been considered: [0, 900 ]s (case I), [300

, - 300 L (case II), [400
, - 400 ]s (case
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Fig. 4. Reliability functions calculated with account of: random load history (curve I), random
load history and scatter in elastic characteristics (curve 2), random load history and scatter in elastic
and strength characteristics (curve 3). Standard deviation of the load value is 10% of the maximum

load level Po = 0.7P:. Correlation time To = 0.01 s in all cases.
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Fig. 5. Reliability function for the shells with ply lay-ups [0 0 ,90"], (curve I), [3D", - 300

], (curve 2),
[40", -400

], (curve 3), and [45', -45'1. (curve 4). Standard deviation of the load value is 10% ofP:. Correlation time To = 0.01 s in all cases.

III), and [45°, -45°], (case IV). Each of the curves has been calculated under its own
random load history, therefore their mutual comparison does not say much. Specifically, a
linearly increasing loading path with the loading rate O.lp; has been used for all of the
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Fig. 6. Dependencies of the expected rates of crossings of the ultimate level on time. Solid lines
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(curve 2), [40", -40°], (curve 3), and [45°, -45°], (curve 4).

variants, but the value ofp: (corresponding to the deterministic first-ply failure) is distinct
for all the lamination cases. The values ofp: are: 0.578 MPa for the case I, 0.113 MPa for
11,0.297 MPa for III, and 0.787 MPa for IV. Note that loading paths were specified in such
a way that in the deterministic problem, first-ply failure occurs at the same time instant,
namely t = 10 s, for all four cases. Standard deviations of the applied internal pressure, (Jp,

were taken 10% of p: for all of the cases (here again, p: has been calculated for each
specific lamination case). Solution of the deterministic problem showed that in the case I
first-ply failure occurred simultaneously in 0° layers and was caused by the transverse tensile
normal strain e22' In the cases II-IV, first-ply failure occurred simultaneously in all ± qJ

layers, and also due to the strain component e22' It is interesting to note that, according to
Fig. 5, the reliability function has a very different shape depending on the ply lay-up. Some
of the curves are rather shallow, others show a very sharp drop of reliability in a rather
narrow time interval.

Some explanation of the calculated variations of the reliability function can be obtained
from the results presented in Fig. 6. Here, variations of the rates of crossings, v[e22 (t) ; eill
and v[el2 (t); ef2], of the ultimate levels on time are shown. The rest of the expected rates of
crossings have much lower values. Solid lines indicate the rates of the up-crossing of the
ultimate level ei2 and dashed lines indicate the rates of crossings of the ultimate level ef2'
It is seen that for the case I the drop of reliability is caused by the tensile transverse strain
only. For the cases II-IV, there is a time instant, t*, at which the rates of up-crossings of
the ultimate level eFl and the rates of crossings of the ultimate level ef2 are equal. This
means that the drop in reliability at this time instant is caused, to an equal extent, by el2

and e22' At t < t*, the first-ply failure due to el2 is most probable, whereas at { > {* the first
ply failure of the same layers is most probable due to e22 . A high probability of different
first-ply failure modes is a consequence of a large scatter of the ultimate shear strains (the
adopted standard deviation is higher than 30%). Even if the mean value of the shear strain
is much lower than its ultimate value, there is a non-zero rate of crossing of the ultimate
levels ef2 as indicated by dashed curve 2 in Fig. 6. With increasing shear strains, the rate of
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crossings of the ultimate levelafz increases, and more pronounced contribution of the shear
failure mode to the drop of reliability is predicted.

7.2. Laminated rectangular plates under biaxial loading
Second example considers laminated plates under proportional biaxial in-plane ran

dom loading. The plate of thickness h = 5· 1O~3 m with the layer properties described in
Table 1 is solved. The applied tractions NxCt) and Ny(t) form a random vector
N(t) = {NxCt) , Nit),O} with its mean non-zero components defined as

<NAt) = N~·t·coSll., <Ny(t) = Nj·t·sinoc (36)

where N: and Nj are some constants specified for each particular ply lay-up. Equation (36)
covers all possible paths of proportional in-plane biaxial loadings as lI. varies from 0 to 2n.
The covariance tensor of random fluctuations of the load vector and the covariance tensor
of its derivative are of the form

~ ~ 1 0 0

<N(8)N) =-<N(8)N)
<6

(37)

where UN, and UNy are standard deviations of the tractions NxCt) and Nit), respectively.
Diagonal form of the matrix of the load covariance tensor in (37) suggests that random
fluctuations of the load components are not correlated.

Figures 7 and 8 illustrate reliability surfaces for laminated plates with ply lay-ups
[60°, - 600L and [30°, - 30°, 90°L, respectively. Standard deviations of the applied tractions
are: UN, = O.IN~ and UNy = O.INj. Here, N~ is the value of the traction defined from the
solution of the corresponding deterministic first-ply failure problem, when only uniaxial
tensile load N = {Nx , 0, O} is applied in the x direction. Similarly, N~ is the value of the
traction defined from the solution of the corresponding deterministic first-ply failure prob
lem when only a uniaxial tensile load N = {O, Ny, O} is applied in the y direction. The
ultimate surfaces related to the corresponding deterministic first-ply failure problems are
also presented in Figs 7 and 8 using dashed lines. The values N: = 0.0965 MPa' m,
Nj = 1.674 MPa' m were obtained for the laminate [600

, - 60°], and N: = 0.396MPa· m,
Nj = 0.594 MPa . m for the laminate [300

, - 30°,90°],. Solid lines in Figs 7 and 8 show a
series ofconcentric surfaces, each corresponding to a different reliability index, in the space
of mean tractions.

Ultimate surface of the laminate [600
, - 60°], (Fig. 7a) is highly directional, which

indicates a sensitivity of the plate to small deviations from the applied loads. Indeed, small
fluctuations of the load vector (~ 10%) result in a violent collapse of the reliability surface
even for the low values of the reliability indices (Fig. 7b). In addition, the shape of the
reliability surfaces completely differs from that of the deterministic ultimate surface. This
indicates that additional failure modes (which are not predicted in the deterministic failure
analysis) appear in the stochastic failure process. Further, it is seen in Fig. 8 that the
reliability surfaces of the laminate [30°, - 30°, 90 0 ]s are far less directional and less collapsed,
at least for the moderate values of the reliability indices. Consequently, this type of lami
nation is less sensitive to the changes in the elastic and strength properties of the material
as well as to the loading conditions.

The above examples illustrate that the developed approach can be efficiently used in
the optimization problems with the constraints formulated in terms of the reliability index.

8. COMPARISON WITH MONTE CARLO SIMULATION RESULTS

Monte Carlo simulations have been carried out in this work to verify the results
obtained with the developed novel analytical approach. To perform the Monte Carlo
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simulation, the random input data has to be generated first. The random elastic and strength
characteristics of the composite material have been generated using standard procedure for
the generation of random numbers with Gauss distribution function (Press et al., 1992). A
random process is modeled using the discrete approximation of the spectral expansion (28) :

K

N(t) ~ <N(t)+ L (Uk COSWkt+Vk sinoht)
k~1

where Uk and Vk are independent Gaussian vectors having the following properties

(38)

Here, Wk = kl1w, I1w = wcfK, We is an upper cut-off frequency beyond which the spectral
density may be assumed to be zero, and (hi is the Croneker delta. Approximation (38) is
asymptotically a Gaussian stochastic process as K --> 00 (Shinozuka and Deodatis, 1991).

Since the following consideration deals with the not-correlated components of the
random loading, it is sufficient to examine the details of the scalar random process modeling.
The spectral density of the scalar stochastic process N(t) with exponential covariance
function of the type (32) is expressed according to the second relation of (30), as follows:

(40)

Note that the random process defined by (40) is differentiable, since

(41)

The plot of the spectral density (40) of the random load fluctuations is shown in Fig. 9a.
The cut-off frequency is specified here as

We = 2n/TQ. (42)

It is seen from Fig. 9a that at W ~ w" the spectral density is very close to zero. Spectral
density defines completely the nature of the internal pressure random fluctuation. The
realizations of these fluctuations modeled by the discrete approximation (38) for several
values of K are presented in Fig. 9b. One can observe that the pseudo-period of random
fluctuations increases with the increase of the number of approximating terms in (38).
Indeed, it can be shown that the simulated stochastic process given by eqn (38) has the
period

(43)

Referring to eqn (42) for the cut-off frequency, one obtains TK/TQ = K.
Monte Carlo simulations have been performed for the laminate [30°, -30°, 900 L con

sidered in the second example of Section 8. The results of Monte Carlo simulation are
illustrated for two specific loading paths: r:x = n/2 and r:x = n/6 which, according to eqn
(36), correspond to uniaxial and biaxial in-plane loading cases, respectively. Twenty terms
(K = 20) in approximation (38) have been used to model the random processes. For each
loading path, 100 Monte Carlo runs have been performed. Results of the Monte Carlo runs
were grouped in bins of size I1t = 0.08 s to obtain the histogram of the first-ply failure
probability density; those are presented in Fig. 10 by open symbols. The data were then
smoothed by applying a Stineman function, and the final results are shown in Fig. 10 by
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dotted lines. Numerical results obtained for the same problem from the developed analytical
method are shown by solid lines. It is seen that correspondence between both groups of
results is very good. This verifies applicability and accuracy of the developed analytical
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approach. In particular, the assumption that crossings of the ultimate level are rare events
is validated, and applicability of the probabilistic linearization procedure used for the
evaluation of the standard deviation of the performance vector is justified.

Finally, it has to be pointed out that in order to obtain the curves presented in Fig.
10, about 100 times more CPU time is required when using Monte Carlo simulation,
compared to the developed analytical method. It also has to be emphasized that when
considering higher reliability indices, the number of required Monte Carlo runs is sharply
increasing. This causes a proportional increase in CPU time consumption. On the contrary,
when performing reliability simulation using the developed analytical approach, CPU time
is independent of the reliability index.

9. CONCLUSIONS

• The developed novel mathematical approach and computational algorithm utilize
advanced theory of stochastic processes, namely, the analysis of rare passages of the
vector stochastic process beyond the stochastic limiting surface.

• The approach allows one to calculate the reliability function of laminated composite
plates and shells with account for (i) random complex loading history, (ii) scatter in the
elastic properties of the lamina, (iii) scatter in the ultimate strains or stresses of the lamina.
Any loading case which can be solved in terms of the in-plane normal and shear tractions
can be analyzed using this approach.

• Illustrative examples show that failure mechanisms in the probabilistic initial failure
problems are substantially more complex than those in the corresponding deterministic
problems. Any of the above factors (i), (ii) or (iii) may have a detrimental effect on the
reliability, although in the studied case the most severe effect was due to the scatter in
ultimate strains.

• Monte Carlo simulations presented in the work for a comparison verify applicability and
accuracy of the developed analytical approach. Numerical examples studied in this work
show that the proposed analytical approach allows one to reduce computational expenses
at least 100 times as compared to Monte Carlo methodology.

• Probabilistic analysis of laminated composite plates and shells provides substantially
more information when considering gradual stochastic failure processes. In this case, even
for a rather small number of layers, there is a great variety of probabilistic "branches" of
the stochastic failure process. Accordingly, an ultimate failure prediction would necess
arily be the result of many "competitive" probabilistic paths of failure. This type of
analysis will be addressed in our future work.
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